lr
data<-read.csv("titanic.csv")
summary(data)
str(data)
any(is.na(data))
library(ggplot2)
ggplot(data,aes(Survived))+geom_bar(aes(fill=factor(Survived)),alpha=0.5)
model<-glm(formula=Survived~.,family = binomial(link='logit'),data=data)
summary(model)
prob<-predict(model,type='response')
prob
library(gmodels)
CrossTable(data$Survived,fitted(model)>0.5)
library(ROCR)
auc<-performance(pred,"auc")
auc@y.values
var sel
data("mtcars")
library(olsrr)
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_step_all_possible(model)
ols_step_best_subset(model)
summary(model)
ols_step_forward_p(model)
ols_step_backward_p(model)
ols_step_both_p(model)
step(lm(mpg~., data=mtcars), direction="backward")
step(lm(mpg~1, data=mtcars), direction="forward")
step(lm(mpg~., data=mtcars), direction="both")
mlr - homoscadasicity
multicolinearity
mlr assumptions
anova : hypo testing